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EFFICIENT SYMBOLIC STATE-SPACE CONSTRUCTION FOR

ASYNCHRONOUS SYSTEMS*

GIANFRANCO CIARDO t, GERALD L('_TTGEN:_, AND RADU SIMINICEANU f

Abstract. Many state-of-the-art techniques for the verification of today's complex embedded systems

rely on the analysis of their reachable state spaces. In this paper, we develop a new algorithm for the

symbolic generation of the state space of asynchronous system models, such as Petri nets. The algorithm

is based on previous work that employs Multi-valued Decision Diagrams (MDDs) for efficiently storing sets

of reachable states. In contrast to related approaches, however, it fully exploits event locality which is a

fundamental semantic property of asynchronous systems. Additionally, the algorithm supports intelligent

cache management and achieves faster convergence via advanced iteration control. It is implemented in the

tool SMART, and run-time results for several examples taken fi'om the Petri net literature show that the

algorithm performs about one order of magnitude faster than the best existing state-space generators.

Key words, event locality, multi-valued decision diagrams, state-space exploration

Subject classification. Computer Science

1. Introduction. The high complexity of today's embed(ted systems requires the application of rigorous

mathematical techniques to testify to their proper behavior. Many of these techniques, including mode]

checking [8], rely on the automated construction of the reachable state space of the system under consideration.

However, state spaces of real-world systems are usually very large, sometimes too large to fit in a workstation's

memory. One contributing factor to this problem is the concurrency inherent in many embedded systems,

such as specified by Petri nets [20]. In fact, the size of the state space of an asynchronous, concurrent system

is potentially exponential in the number of its parallel components. Consequently, many research efforts in

state-exploration techniques have concentrated on the efficient exploration and storage of very large state

spaces. In the literature, two principal research directions are considered, which differ from each other by

whether sets of states are stored explicitly or symbolically.

Explicit techniques represent the reachable state spaces of systems by trees, hash tables, or graphs, where

each state corresponds to an entity of the underlying data structure [3, 6, 10, 13]. Thus, the memory needed

to store the state space of a system is linear in the number of the system's states, which in practice limits

these techniques to fairly small systems having at most a few million states. However, since state spaces are

encoded explicitly in their natural form, minimization techniques with respect to behavioral equivalences [12]

or partial-order techniques [11] may be applied to reduce the sizes of state spaces fllrther. Explicit techniques

prove especially advantageous if one is interested in the numerical analysis of Markov processes defined over

such state spaces [16].

*This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046

while the authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681-2199, USA.

t Department of Computer Science, P.O. Box 8795, College of William and ]_Iary, \Villiamsburg, \5\ 23187-8795, USA, emaih

{ciardo, radu } _lcs.wm.edu.

$ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199, USA, e-maih ]uettgen¢_icase.edu.



Symbolic techniques alh)w one to store reachability sets in sublinear space. Most symbolic approaches

use Binary Decision Diagrams (BDDs) as data structure for efficiently representing Boolean functions [1],

into which state spaces can be mapped. The advent of BDD-based techniques pushed the manageable sizes

of state spaces to about 1020 states [4]. Ill tile Petri net community, BDDs were first applied t)5' Pastor et

al. [22] for the generation of the reachability sets of safe Petri nets and, subsequently, efficient encodings

for other classes of Petri nets into BDDs were investigated [21]. Recently, symbolic state-space generation

for Petri nets has been significantly improved [19]. The approach taken in [19] does not rely on BDDs, but

is based on the more general concept of Multi-valued Decision Diagrams (MDDs) [15]. MDDs essentially

represent integer functions and allow one to efficiently encode the state of an entire subnet of a Petri net

using only a single integer variable, where the state spaces of the subnets are built by employing traditional

techniques. Experimental results reported in [19] show that this approach enables the representation of even

larger state spaces of size 1060 and even 10600 states for particularly regular nets. However, the tiine needed

to generate some of these state spaces ranges fl'om several minutes for the dining philosophers [22], with

1000 philosophers, to several hours for the Kanban system [6], with an initial token count of 75 tokens. Thus,

while symbolic techniques are able to store larger and larger state spaces, state-space generation shifts from

a memory-bound to a time-bound problem.

The objective of this paper is to improve on the time efficiency of symbolic state-space generation

techniques for a particular class of systems, namely asynchronous systems. This (:lass is especially interesting

since it includes many embedded software systems. Our approach exploits the concept of event locality, or

interleaving, inherent in asynchronous systems. In Petri nets, for example, event locality means that only

those sub-markings belonging to the subnets affected by a given transition need to be updated when the

transition fires. Whereas event locality has been investigated in explicit state-space generation techniques [5],

it has been largely ignored in symbolic techniques. Only the MDD-based approach presented in [19] touches

on event locality, but it exploits this concept, only superficially. In particular, this approach does not

support direct jumps to the part of the MDD corresponding to the submarkings that need to be updated

when a transition fires. Similarly, it. does not consider jumping out of the MDD upon finishing a local

update of the data structure. The present paper develops a new algorithm for building the reachable

state spaces of asynchronous systems, which is based on the algorithm described in [19]. Like [19], it uses

MDDs for representing state spaces; unlike [19], it fully exploits event locality. Moreover, it introduces

an intelligent mechanism for cache management, and also achieves faster convergence by firing events in

a specific, predefined order. The new algorithm is implemented in the tool SMART [5] and is applied to

explore tlle reachable state spaces of a suite of well-known Pet.ri net models. It. turns out. that this algorithm

is about one order of magnitude faster than the one presented in [19]. 1Remarkably, this improvement is

mainly achieved by exploiting event locality and induces only a small overhead regarding space efficiency.

The remainder of this paper is organized as follows. The next section provides some background material

regarding structured state spaces and MDDs. Sees. 3 and 4 focus on several conceptual issues, based on

the notion of event locality, which are essential for deriving our new MDD-based algorithm in two variants.

Details of the variants are presented in Sec. 5, while Sec. 6 discusses some performance results. Secs. 7

and 8 refer to related work and present our conclusions as well as directions for future work, respectively.

Finally, Appendices A C contain the detailed pseudo code of our algorithm, while Appendix D illustrates

the algorithm step-by-step for a small example system.



2. Structured State Spaces and Multi-valued Decision Diagrams. This section gives a brief

introduction and defines some notation regarding structured state spaces and nmlti-vahmd decision diagrams.

2.1. Structured State Spaces. Wc choose to specify finite-state a_synchronous systems by Petri nets,

noting that, however, the concepts and techniques presented in this paper are not limited to this choice.

Thus, we interchangeably use the notions net and system, subnet and sub-system, transition and event,

marking and (global) state, as well as sub-marking and local state.

Consider a Petri net with a finite set 7) of places, a finite set g of events, and an initial marking So E N 1_1.

The interleaving semantics of Petri nets [20] defines how the firing of an event c can move the net from some

state s to another state s'. We denote the set of successor states, or "next states," which are reachal)le

from state s via event e by .%'(e, s). If A"(e, s) = O, event c is disabled in s; otherwise, it is enabled. For

Petri nets, A ,' is essentially a simple encoding of the input and output arcs; thus, ._(e, s) contains at most

one element. For other formalisms, however, ,_'(e, s) might contain several elements. We are interested in

exploring the set S of reachable states of the net under consideration. $ is formally defined as the smallest

set that (i) contains the initial state so of the net and (it) is closed under the "one-step teachability relation,"

i.e., if s E S, then _%r(e, s) C S, for any event e defined in the net.

As in [19], our encoding of the state space of a Petri net requires us to partition the net into I_" subnets

by splitting its set of places _ into L" subsets 7_h-, 7)K_1,.. • , 7)1- This implies a partition of a global state s

of the net into I( local states, i.e., s has the form (sK,sh--1,..., Sl). The partition of _o must satisfy a

fundamental product-foT_m requirement, which is also needed in Kronecker approaches for computing the

solution of structured Markov models [7]. The product form demands for function A" to be written as the

cross-product of L" local next-state flmctions, i.e., A"(e, s) = ._'K (e, s_.-) x ArK_ 1(c, s _-_ 1) x... x ._"1(c, s l ) for

all e E g and s C $. Furthermore, in practice, each subnet should be small enough such that its reachable

local state space S_, = {sk,0, sk,l,... , Sk.Nk-1 } can be efficiently computed by traditional techniques, where

_\. E N is the number of reachable states in subnet k. Note that this might require the explicit insertion of

additional constraints, for example expressed through implicit places, to allow for the correct computation

of SA. in isolation. In reality, one may use a small superset of the "true" Sk, e.g., obtained by employing

p-invariants [20]. Once Sk has been built, we can identify it with the set {0, 1,..., 5\. - 1}. Moreover, a

set $ of global states can then be encoded by the characteristic function

fs: {0,... ,N_: - 1} x {0,..., Nh'-i - 1} x---x {0,... ,N1 - 1} ---+ {0,1}

defined by f(sh _, sK-l,... , sl) = 1 if and only if (sK, si¢-1,... , Sl) E $. Such characteristic flmctions can

be stored and manipulated efficiently, as suggested in the following sections.

2.2. Multi-valued Decision Diagrams. Multi-valued Decision, Diagrams [15], or MDDs for short,

are data structures for efficiently representing integer functions of the form

I: {0,... ,NK - 1} x {0,..., -_r/<_ 1 - 1} x..-x {0 .... ,N 1 - 1} _ {0,... ,__I - 1)

where K, 5I E Nand N_. C N, for K_> k_> 1. When 21I = 2and 5,'_. = 2, for K___ k >__1, fimction f is

a Boolean function, and MDDs coincide with the better known Binary Decision Diagrams (BDDs) [1, 2].

Another special case, where 21I = 2, arc the characteristic functions mentioned in the previous section.

Traditionally, integer functions are often represented by value tables or decision trees. Fig. 2.1, left-hand

side, shows the decision tree of the minimum function min(a,b,e), where the variables a, b, and c are taken



fromtheset{0,1,2}. Hence,K = 3 and NI = .N½ = N3 = M = 3. Each internal node, which is depicted by

an oval, is labeled by a variable and has arcs directed towards its three children. The i-th branch corresponds

to the case where the variable of tile node under consideration is assigned value i. Moreover, all nodes at a

given level of tile tree are labeled by the same variable, i.e., all paths through the tree have the same variable

ordering, which in our example is a < b < c. Leaf nodes, depicted by squares, are labeled by either 0, 1,

or 2. Each path from the root to a leaf node corresponds to an assignment of the variables to values. The

value of the leaf in a given path is the value of the function with respect to the assignment for this path.

2 0 I 2 2

FIG. 2.1. Representation of min(a,b,c) as decision tree (left) and as MDD (right)

An MDD is a representation of a decision tree as directed acyclic graph, where identical subtrees are

merged. More precisely, MDDs are reduced decision trees which do not contain any non-unique or redundant

node. A node is considered to be non-unique if it is a replica of another node, and to be redundant if all its

children are identical. Together with a fixed variable ordering, these two requirements ensure that MDDs

provide a canonical representation of integer functions [15]. Note that the elimination of redundant nodes

implies that arcs can skip levels. For example, the arc labeled with 0 connecting node a to leaf node 0 in

Fig. 2.1, right-hand side, skips levels b and c. This means that the value of the function is 0, whenever a is 0.

MDD representations can be exponentially more compact than their corresponding value tables or decision

trees. However, the degree of compactness depends on the chosen variable ordering.

2.3. Data Structures for MDDs. We organize MDD nodes in levels ranging from K, at the top,

to l, at the bottom. Additionally, there is the special level 0, which contains either or both leaf nodes

corresponding to the values 0 and 1, indicating whether a state is reachable or not. In practice, however,

there is no need to store these nodes explicitly. The addresses of the nodes at a given level are stored within

a hash table, to provide fast access to them and to simplify detection of non-unique nodes. Hence, we have

K hash tables which together represent an MDD. We also refer to this data structure as unique table. Each

node at level k consists of an array of _. node addresses, which contain the arcs to the children of the node.

Since we enforce the reducedness property, we use the value of this array to compute the hash value of the

node. In the following, we let mddNode denote the type of nodes and mddAddr the type of addresses of

nodes. Note that we could also use a single unique table for representing MDDs, but this would require us to

store the level of a node as part of mddNode; furthermore, the level-wise organization of our data structures

will prove very useful for the purposes of this paper. For notational simplicity, we often write (lvl, ind) for

the node q stored in the lvl-th unique table at position ind, and q_dw[i] for the i-th child of q. Finally, we

use nodes (0, 0) and (0, 1) to indicate the Boolean values 0 and 1 at level 0, respectively.



TABLE 2, 1

"Union" operation on MDDs

Union(in p : rnddAddr, in q : mddAddr) : mddAddr

1. if p= (0,1) orq= (0,1) return (0,1);

2. ifp = (0,0) or p = q return q;

3. if q = (0,0) return p;

4. k 4= 2IIax(p.lvl, q.lvl);

5. if LookUpInUC(k,p,q,r) then return r;

6. r _: CreateNodc(k);

7. for i--0 to N_.- 1 do

8. if k > p.lvl then u _ Union(p, q--*dw[i]);

9. else if k > q.lvl then u _ Union(p-4dw[i], q);

10. else u _ Union(p-*dw[i],q-_dw[i]);

11. SetArc(r, i, u);

12.

13.

14.

• deal with the base cases first

• maximum of the levels of p and q

• if found in the union cache, the result is returned in r

• otherwise, the union needs to be computed in r

• for the i-th child do...

• p is at a lower level than q

• q is at a lower level than p

• p and q are at the same level

• make u the i-th child of r

r _ CheckNode(r); • if r is unique and non-redundant, store it in the unique table

InsertInUC(k,p,q,r); • record the result of this union in the union cache

return r; • return MDD representing the "union" of p and q

2.4. The Union Operation on MDDs. An essential operation for generating reachable state spaces

is the binary union on sets. Since in our context all sets are represented as MDDs, an algorithm is needed

which takes two MDDs as parameters and returns a new MDD, representing the union of the sets represented

by its arguments. This algorithm, which is very similar to the one used in [19], that in turn is adapted from

a BDD-based algorithm [2], is shown in Table 2.1. It recursively analyzes the argument MDDs, when

descending from the maximum level k of the argument MDDs to the lowest level 0, and builds the result

MDD, when finishing the recursions by ascending from level 0 to level k. Note that the maximum of the

levels of the argument MDDs is the highest level the result MDD can have.

Tim base cases of the recursive function Union are handled in Lines 1 3, where the MDDs (0, 0) and (0, 1}

encode the empty set and the full set, respectively. If k > 0, a union cache is used to check whether the union

of the arguments p and q has been computed previously. If so, the result stored in the cache is returned.

Otherwise, a new MDD node at level k is created whose i-th child is determined by recursively building the

union of the i-th child ofp and the i-th child of q, for all 0 < i < 3,_. (of. Lines 7 ll). However, one needs

to take care of the fact that some child might not be explicitly represented, namely if it is redundant (cf.

Lines 8 and 9). Finally, to ensure that the resulting MDD is reduced, node r is checked by calling fimction

CheckNode(r). If r is redundant, then CheckNode destroys r and returns r's child, and if r is equivalent to

another node r' having the same children, then CheckNode destroys r and returns 7"/. Otherwise, CheckNode

inserts node r in the unique table and returns it. Note that the algorithm in Table 2.i can be easily adapted

for computing many other binary operations, such as intersection, 1)3' modifying Lines 1 3 accordingly.

2.5. MDD-based State-space Construction. Table 2.2 shows a naive, iterative, and MDD-based

algorithm to build the reachable state space of a system represented by a Petri net. As explained earlier, the

state space is encoded as a characteristic function, so a global state s = (sK, sK-l,... , sl) is stored over the

K levels of the MDD, one substate per level. Please recall that this requires us to partition Petri nets into

subnets. While this can in principle be done automatically, it is still an open problem how to efficiently find

"good" partitions, i.c., those that lead to small MDD representations of reachable state spaces. We refer the

reader to [19] for a detailed discussion of issues regarding partitioning.



TABLE "2-.2

Iterative state-space generation

[ MDDgcncration(in m : array[I,... , K] of int) : mddAddr

1. for k = 1 to K do ClearUT(k);

2. q _ Setlnitial(m);

3. repeat

4. for k -- 1 to h" do ClearUC(k);

5. for k = 1 to K do ClearFC(k);

6. mddChanged ¢= false;

7. foreach event e do Fire(e, q, mddChanged)

8. until mddChanged = false;

9. return q;

• clear unique table

• build and return MDD representing the initial state

• start state-space exploration
• clear union cache

• clear firing cache

• truc if MDD changes in this iteration

• fire event e and add newly reached states to MDD

• keep iterating until fixed point is reached

• return MDD representingthe reachablestate space

The semantics of the Petri net under study is encoded in procedure Fire (cf. Table 2.2), which updates

the MDD rooted at q according to tile firing of event e by appropriately applying the Union operation shown

at)ore. For efficiency reasons, it also makes use of another cache, which wc refer to as firing cache. Tile

procedure additionally updates a flag mddChanged, if the firing of e added an5" new reachable states. After

first clearing the unique tat)le, the initial nlarking m of the Petri net under consideration is stored as an MDD

via procedure SetInitial. The algorithm then proceeds iteratively. In each iteration, every enabled Petri net

transition is fired, and the potentially new states are added to the MDD. This is done until the MDD does

not change, i.e., until no more reachable states are discovered. Finally, the root node q, representing the

reachable state space of tile Petri net, is returned.

3. The Concept of Event Locality. Our improvements for the MDD-based generation of reachable

state spaces rely on the notion of event locality, which asynchronous systems inherently obey.

Event locality, which is sometimes also referred to as interleaving, is defined via the concept of in-

dependence of events from subnets. An event e is said to be independent of the k-ttl subnet of the

' for all s = (Sl_,sK-1 .. sl) E S andnet under consideration, or independent of level k, if sk = sk ,. ,

s' = (,_._, ' ..sK_l, . ,s_) E ._'(e,s), i.e., if._/k(e,') is the identity function. Otherwise, e depends on the k-th

subnet, or on level k. If an event depends only on a single level k, it is called a local event for level k; other-

wise, it is a synchronizing event [19]. We let First(e) and Last(e) denote the maximum and minimum levels

on which e depends. Hence, e is independent of every level k satisfying K >_ k > First(e) or Last(e) > k > 1,

while e might or might not depend on any level k strictly between First(e) and Last(e). For asynchronous

systems in particular, tile range of affected levels, First(e) - Last(e) + 1, is usually significantly smaller

than K h)r most events e. We assume that all local events for level k are merged into a single macro event lk

satisfying ._.'_.(It., s) =,if [-J_.c_':F_,._t(_.)=t._t (_)=_.._'k (e, ._) for all s E S. This convention does not only simplify

notation, but also improves the efficiency of our state-space generation algorithm.

Our aim is to define MDD manipulation algorithms that exploit the concept of event locality. Since

an event e affects local states stored between levels First(e) and Last(e), firing e only causes updates of

MDD nodes between these levels, t)lus possibly at levels higher than Fi_:st(e), but only when a node at level

Fir.st(c) becomes redundant or non-unique, and possibly levels lower than Last(e), but only until recursive

Union calls stop creating new nodes. To benefit from this observation, we need to be able to access MDD

nodes by "jumping in the middle" of an MDD, namely to level First(e), rather than always having to start

manipulating MDDs at the root, as is done in traditional approaches, including [19]. This is the reason why



wepartitiontheuniquetable,whichstoresMDDs,intoa K-dimensional array of lists of nodes. However,

two problems need t.o be addressed when one wants to access an MDD directly at some level First(e). We

treat them separately in the following two sections.

First(e)

Last(e)

Explicit nodes need to be inserted in order
to deal with implicit roots at level FiJwt(e).

FIG. 3.1. Illustration of event locality and the problem of implicit roots

3.1. Implicit Roots. When one wants to explore an MDD from level First(e), all nodes at this level

should intuitively play the role of root nodes. However, some of them might not be represented explicitly,

since redundant nodes are not stored. This happens whenever there is a node p at a level higher than First(e)

pointing to a node q at a level k satisfying First(e) > k >_ Last(c). This situation is illustrated in Fig. 3.1,

left-hand side. Conceptually, we have to re-insert these "implicit roots" at level First(e) when we explore and

modify the MDD due to tile firing of event e. There are two approaches for doing this. The first approach

stores a bag (nmltiset) of upstream arcs in each node q, corresponding to tile downstream arcs pointing to q.

In other words, for each i such that p-+dw[i] = q, there is an occurrence of p in the bag of q's upstream arcs.

hnt)licit roots can then be detected by scanning each node stored in the unique tables for levels First(e) + 1

through Last(e), and checking whether the node possesses one or more upstream arcs to a node at a level

above First(e). If so, an implicit root, i.e., a redundant node, is inserted at level First(e). Note that at

most one implicit root needs to be inserted per node, regardless of how many arcs reach it; in our example,

the arcs from both p and p_ are re-routed to the same new implicit root. These redundant nodes will be

deleted after firing event e, if they are still redundant. Thus, the first approach preserves the reducedness

property of MDDs. Our second approach, keeps all unique redundant nodes, so that downstream arcs in the

resulting MDD exist only between subsequent levels. Then, the nodes at level First(e) are exactly all the

nodes from which we need to start exploring the underlying MDD when firing event c. Please note that this

slight variation of MDDs still possesses the fundamental property of being a canonical representation.

We refer to the two variants of our algorithm as upstream-arcs approach and forwarding-arcs approach;

the choice for the phrase "forwarding-arcs" will become clear in the next section. The latter approach,

when compared to the former, eliminates the expensive need to search for implicit roots. However, both

approaches have some memory penalty potentially associated with them, the former for the storage of the



upstreamarcs,whichcanin theworstcasedoubletile spacerequirements,andthelatterbecauseof the
preservationof redundantnodes.Wehaveimplementedbothapproaches,andexperimentalresultsshow
that thesememoryoverheadsarecompensatedby asmallerpeaknumberof MDDnodes,whencompared
to theapproachin [19].

3.2. In-placeUpdates. Onceall nodesat levelFirst(e), explicit as well as implicit, are detected, one

can update the MDD to reflect that the firing of event c may lead to new, reachable states. Our routine

Fire implementing this update is described in detail in See. 5.1. It heavily relies on the Union operation, as

presented in Table 2.1, i.e., new MDD nodes are created and appropriately inserted, as needed. However,

there is one important difference with respect to existing approaches. Our Fire operation stops creating

new MDD-nodes as soon as it reaches level First(e) when backtracking from recursive calls. At this level

our algorithm just links the new sub-MDDs at the appropriate positions in the original MDD, in accordance

with the concept of event locality. The only difficulty with the in-place update of some node p arises when it

becomes redundant or non-unique. In the former case, p must be deleted and its incoming arcs be re-directed

to its unique child node q. In the latter case, p must be deleted and its incoming arcs be re-directed to the

replica node q. In the upstream-arcs approach, this is trivial since p knows its parents.

In the forwarding-arcs approach, we keep redundant nodes; thus, we eliminate p only if it becomes non-

unique. However, we do not have upstream arcs. Instead of scanning all the nodes in level First(e) + 1 to

search foi- arcs to p, which is a costly operation, we mark p as deleted and set a forwarding arc from p to q.

The next time a node accesses p, it will update its own pointer to p, so that it points to q instead. Since node q

itself might be marked as deleted later on, forwarding chains of nodes can arise. In our implementation, the

nodes in these chains are deleted only after all the events at level First(e) have been fired and before nodes

at the next higher level are explored.

It is important to note that, although these in-place updates change the meaning of MDD-nodes at higher

levels, they do not jeopardize the correctness of our algorithm. This is due to the interleaving semantics of
w

asynchronous systems (cf. See. 5.3). Rather than performing in-place updates, existing approaches reported

in the literature create an MDD encoding the set of global states reachable from the current states in the

state space by firing event e. This is a K-level MDD, i.e., it is expensive to build compared to our sub-MDD,

especially when MDDs are tall and the effect of e is restricted to a small range of levels.

Summarizing, it is the notion of event locality for asynchronous systems that allows us to drastically

improve on tile time efficiency of MDD-based state-space generation techniques. Exploiting locality, we can

jump in and out of the "middle" of MDDs, thereby exploring only those levels that are affected by the event

under investigation. While the approach reported in [19] also claims to exploit locality, it only considers

some simplifications and improvements of MDD manipulations in the case of local events. However, it does

not support localized modifications of MDDs neither for synchronizing events, nor for local events.

4. Improving Cache Management and Iteration Control. The concept of event locality also

paves the road towards significant improvements in cache management and iteration control, which wc

present next. An efficient cache management as welt as an efficient organization of the iteration control are

of utmost importance for the performance of MDD-based algorithms for state-space generation.

4.1. Intelligent Cache Management. The technique of in-place updates introduced in Sec. 3.2 allows

us to enhance the efficiency of the union (:ache. In related work regarding state-space generation using decision



diagrams,includitig[19],thelifetimeofthecontentsoftileunioncachecannr_tspanmorethanoneiteration,
sincetherootofanyMDDisdeletedandre-createdwheneveradditionalreachat)lestatesareincorporatedin
theMDD.Inotherworcts,anychangeinanI_'IDDnode,i.e.,in its dw-array of pointers, is really implemented

as a deletion followed t)y an insertion.

In contrast, in our approach the "wave" of changes towards the root, caused by firing an event c, is

stopped at level First(c), where only a pointer is updated. This permits some union cache entries to be

reused over several iterations, until the referred nodes are either changed or deleted. For this purpose, ._IDD

nodes in our implementation have two status bits attached, namely a cached flag and a dirty flag. Instead of

thoroughly (:leaning ut) the union cache after each iteration, we can now perform a selective purging according

to tile above flags. More precisely, if an MDD node associated with a union cache entry is not deleted and

if the copies present in the cache are not stale, the result may be kept in the union cache and reused later

on. Experimental studies show us that the rate of reusability of union cache entries averages at)out 10% and

that the overall performance of our algorithm can be improved by up to 13% when employing this idea.

Additionally, we devise a second optimization technique for the union cache, which is based on prediction

and is conceptually very similar to associative caches studied in the field of computer architecture. Our

prediction relies on the fact that if Union(p, q) returns r, then also Union(p, r) and Union(q, r) will return r.

Thus, these two additional results can be memorized in the cache, immediately after storing the entry for

Union(p, q). Experiments indicate that this heuristics speeds-up our algorithm by up to 12_. The reason

for such a significant improvement is the following. Assume we are exploring the firing of event e in node p

at level k, and assume j ¢ .k'_.(e,i). Then, the set of states encoded by the .XIDD rooted at p-+dw[i]

needs to be added to the set of states encoded by tile MDD rooted at p-+ dw[j]. Let r bc the result of

Union(p-+dw[i],p-+dw[j]), whi(:h becomes the new value of p-+dw[j]. At the next iteration, and assuming

that p has not been deleted, we explore event c in node p again and, consequently, find out that e is enabled in

local state i. Hence, we need to perform the update p-+dw[j] _ Union(l>-+dw[i],p--_dw[j]) again. However,

if p has not changed, Union(p-+dw[i], p-+dw[j]) is identical to Uniou(p_dw[i], r) = r. By having cached r at

the previous iteration, we can avoid computing this union, even if it was never explicitly computed before.

4.2. Advanced Iteration Control. Event locality also allows us to reduce the number of iterations

needed for generating reachable state spaces. Existing l_fDD-based algorithms for Petri nets [19, 22] fire

events in some arbitrary order within each iteration, as indicated in Line 7 of function MDDgener_tion in

Table 2.2. In our version of MDDgeneration, however, we presort events according to function First(.). Our

algorithm then starts at level 1 and searches for the states that can be reached from the initial state by

firing all events e satisfying First(e) = 1 and Last(e) _> 1, i.e., the macro event I1. When reaching level k,

our algorithm finds all states that can be added to tile current state space by firing all events e satisfying

First(_:) = k and Last(e) _> 1, i.e., the local macro event lk at level t: and all synchronizing events that affect

only level k and any level below. Moreover, in our imt)lementation, we repeatedly fire each event at level k,

as long as it is enabled and as long as firing it adds new states.

This specific sequence of firing events is essential for the correctness and efficiency of the implementation

of our cache management. By working from tile bottom levels to the top levels, we can clear the union and

firing caches more selectively, thus, extending the lifetime of cache entries. Moreover, the access pattern to

the caches is more regular and, thereby, contributes to higher hit ratios. Our firing sequence also enables

delayed node deletion which allows for efficient collection and removal of non-unique and disconnected nodes,

especially in the forwarding-arcs approach.



In [19],repeatedlyfiring eventsis onlyappliedfor localevents,whicharerelati('elyinexpensiveto
process,whilesynchronizingeventsarestill firedonlyonceandinnoparticularorder.Westressthat while
thenewiterationcontrolmeansthat ouriterationsarepotentiallymoreexpensivethanthosein [19],they
arealsopotentiMlyfewer.Moreprecisely,ouralgorithmgeneratesstatespacesin atmostasmanyiterations
asthemaximumsynchronizing distance of any reachable state s, which is defined in [19] as the minimal

number of synchronizing events required to reach _ from the initial state, without counting local events.

5. Details of the New Algorithm. In this section, we present some important details on both variants

of our new MDD-based algorittim. We first illustrate how to update MDDs in response to firing an event.

We then discuss the data structures used and, finally, argue why the algorithm is correct. Please note that

the complete pseudo code of the algorithm is included in the first three sections of the appendix.

<5,1> <5,1>

<5,0>[_1 LL2 _l l, I I I <5,0>1it I I I [_L_L_I_]

i<4,.-k "'I:

ti<3,0> [ L_ Union <-'I>LA ==_ <3,o>1111 lfl l I <3,2>

Current stale space: Event e enabled by <4,0>: New slate space:

s,,..= {(0,0,*,0,0,0,), (3,1,0,0,0,0)1 (.,.,3,0,0,.) e__(.,.,o,l,l,.) S,,_.,.t= {(0.0,*,0,0,0). (O,O,O,LI,O),(3,1,O,O,O,O)}

F1c. 5.1. Example of an MDD-modification in re.sponse to firing an event

5.1. Illustration of MDD-based Firing of Events. At each iteration of our algorithm, enabled

events are fired to discover additional reachable states, which are then added to the MDD representing the

currently-known portion of the reachability set of the Petri net under stud,,'. Function Fire(e,-, .) implements

this behavior with respect to event e. Fig. 5.1 illustrates, by means of a small example, how Fire works.

The example net is partitioned into six subnets, each of them having four possible local states, numbered

from 0 to 3. Hence, our MDD has six levels, and each MDD node has four downstream arcs; here, we do

not draw node (0,0), nor any arc to it. Let the current state space, depicted on the left in Fig. 5.1, be

S,.,,,._ = {(0, 0, *, 0, 0, 0), (3, 1, 0, 0, 0, 0)}, where "*" stands for any local state. Assume further that event c is

enabled in every state of the form (*, *, 3, 0, 0, *) and that the new state reached when firing e is (*, *, 0, 1, 1, *),

i.e., First(c) = 4 and Last(e) = 2. Hence, if the net is in a global state described by local state 3 at level 4

at|d local state 0 at levels 3 and 2, event c can fire and the local states of the affected subnets are updated

to 0, 1, and 1, respectively.

Exploiting event locality, our search for enabling sequences starts directly at level First(c) = 4. The

sub-MDDs rooted at this level are searched to match the enabling pattern of e. At level 4, only the MDD

rooted at (4, 0) contains such a pattern, along the path (4, 0)-_+ (3, 0)--_ (2, 0)--E+ (1,0). Then, our algorithm
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generates a new MDD rooted at node (4,2}, representing the set of substates for levels 4 through 1 that

can be reached from (4, 0) via c. This MDD is depicted in Fig. 5.1 ill the middle. Note that only nodes

at levels First(e) through Last(c) might have to be created, since those below Last(e) can simply be linked

to existing nodes, such as node (1,0} in our example. Indeed, in our implementation, even node (4, 2} is

actually not allocated, since we explore it one child at a time. This MDD corresponds to all states of the

form (ct, 0, 1, 1,/_), where (_: is any substate leading to node (4, 0) and where/3 is a substate reachable from

the 0-th arc of node (2, 0/. In our example, (_ and fl can only be the substates (0, 0) and (0), respectively.

In other words, the set of states to be added by firing e in node (4, 0) is ,Sadd = {(0, 0, 0, 1, 1,0)}. Finally,

the 0-th downstream arc of node {4, 0) is updated to point to the result of the union of the MDDs rooted at

nodes (3, 0) and (3, 1), which is stored in an MDD rooted at the new node {3, 2), as depicted on the right in

Fig. 5.1. Hence, the resulting state space S,,_,t is {(0, 0, *, 0, 0, 0)_ (0, 0, 0, 1, l, 0), (3, 1,0, 0, 0, 0)}, as desired.

Note that our version of Fire(e) is much more efficient than the one in [19]. In particular, it exploits the

locality of e and, therefore, operates on smaller MDDs. This is important since the complexity of the Union

operation is proportional to the number of nodes in its operand MDDs.

5.2. Implementation Details. MDD nodes store not only the addresses of their children, but also

Boolean flags for garbage collection and intelligent cache management, as well as information specific to the

upstream-arcs approach and to the forwarding-arcs approach.

In our implementation, nodes are stored using one heap array per MDD level. The pages of the heap

array are created only upon request and accommodate dynamic deletion and creation of nodes. Therefore,

existing nodes may not be stored contiguously in memory. For fast retrieval, we maintain a doubly-liIlked

list of nodes. Upon deletion, a node is moved to the back of the list, thereby, allowing for garbage collection

(but not garbage removal) in constant time.

The unique table, the union cache, and the firing cache are organized as arrays of hash tables, i.e.,

one hash table per level. For the unique table, tile hash key of a node is determined using the values in

its dw-array. For the union cache, the addresses of the two MDD nodes involved in the union are used to

determine the hash key. Together with the Boolean cached and dirty flags, this allows us to reuse union

cache entries across iterations without danger of accessing stale vahles. Finally, the hash key for firing cache

entries is determined using ouly the address of the MDD node to which the firing operation is applied. Note

that the identity of the event is implicit, since the firing cache is cleared when moving from one event to

the next. The alternative approach, i.e., allowing tlle co-existence of entries referring to different events in

the cache, would require a larger cache with a key based on a pair of MDD node and event. However, this

would not bring enough benefits, since the major cost of processing the firing of an event lies in the Union

operations, and these can indeed be cached across operations.

For tile upstream-arcs approach, MDD nodes include the addresses of their parents, which we store in

a bag. Our iml)lementation uses a dynamic data structure for bags, rather than a static data structure,

since the number of parents of a node is not known in advance and may be very large, in the range of

several thousand nodes. While this memory overhead is still acceptable, the approach also puts a burden on

time efficiency, since each update of a downstream arc must be reflected by an update of the corresponding

upstream arc. Moreover, tile bag of some node q only stores the address of parents p, as well as the number

of indexes i such that p--+dw[i] = q, but not the indexes themselves. Thus, a linear search in the array p--+dw

must be performed to find these indexes. The alternative, namely storing these indexes in q, would require

even more memory overhead.
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Regardingtheforwarding-arcsapproach,timeefficiencyis improvedbyallowingredundantnodesto be
representedexplicitly.Asa consequence,MDD nodesdonot needto storebagsof parents'addresses,but
simplya counterindicatingthenumberofincomingarcs[19].Whenthiscounterreacheszero,it indicates
thatthenodehasbecomedisconnectedandcanbedeleted.Experimentsshowthatthememoryoverheadof
thisapproach,dueto thestorageofredundantnodesandthedelayeddeletionofnon-uniquenodes,isabout
thesameasthememoryoverheadof theupstream-arcsapproadl.However,theforwarding-arcsapproachis
moretime-effMent,asconfirmedbytheresultsin Sec.6.

5.3. Correctnessof the Algorithm. First of all, it is easy to see that our algorithnl terminates for

finite-state systems, since each iteration adds new states to the reachability set under construction. The

partial correctness of our algorithm is based on the interleaving semantics of asynchronous systems, which

formally states the following.

Let $ be the set of global reachable states for the system under consideration, and let

s = (sK,sK-1,... ,sl) C $ be arbitrary. Moreover, let e be an event enabled in s and

s' = (s_,-,.s_,.__,... ,s_) the global state reached by firing it. By the principle of event

' for all k satisfying K > k > First(e) or Last(c) > k > 1. Thenlocality we know that st_ = s_, _ _

• s' . _' ,rl)c$,forwe may conclude _ =dr (rK,.. , rFirst (e)+l,. First(e)' " " '' Last(c)' rLast(¢) - 1,- • •

all global states r = (rK,rK-l,--- ,rl) • S.

This interleaving principle is directly implemented in our algorithm in form of local MDD explorations

and in-place updates of MDD nodes. In fact, the global state _ mentioned above is implicitly inserted in

our MDD whenever state s _ is. There is no need to compute _ explicitly, as is clone in related explicit and

symbolic approaches to state-space generation. This observation is the key for improving on the performance

of traditional state-space generators.

6. Experimental Studies. In this section, we present several performance results regarding the two

variants of our algorithm and compare them with the approach most closely related to ours, namely the one

reported in [19]. The variants of our algorithm are implemented in the Petri net tool SMA137[ (Simulation

and Markovian Analyzer for Reliability and Timing) [5]. We apply the tool to the four Pet ri net models

also considered in [19], i.e., the dining philosophers, the slotted-ring system, the flexible manufacturing

system (FMS), and the Kanban system. The former two models, originally taken from [22], are composed

of N identical safe subnets, i.e., each place contains at most one token at a time. The latter two models,

originally taken from [6], have a fixed number of places and transitions, but are parameterized by the

number N of initial tokens in certain places. The Petri nets for these systems are depicted in Fig. 6.1. To

use MDDs, we adopt the "best" partitions found in [19]: we consider two philosophers per level and one

subnet per level for the slotted-ring protocol, while we split the FMS and the Kanban system into 19 subnets

(each place in a separate subnet except for {P_M_, Mr}, {P_2M3, M3}, and {P.zM2, M.,}) and 4 subnets

({p,,x, Pba¢'kX, Po,tX, PX } for X = 1, 2, 3, 4), respectively.

Table 6.1 presents several results for the two variants of our new algorithm, as well as the best-known

existing algorithm [19], obtained when running SMART on a 500 MHz Intel Pentium II workstation with

512 MB of memory and 512 KB cache. For each inodel and choice of N, we give the size of the state space

and the final lmmber of MDD nodes, which is of course independent of the algorithm used. Then, for each

algorithm, we give the peak number of MDD nodes allocated during execution, the number of iterations,

and the CPU time. The peak number of MDD nodes and the number of iterations for the upstream-arcs and
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FIC. 6.1. Petri nets used in our experiments: dining philosophers (upper left), Kanban system (upper righO, FM,q (lower

left), and slotted-ring (lower right)

forwarding-arcs approaches coincide, except for the FMS and the Kanban system, where the peak number

reported should be increased by one for the forwarding-arcs approach. This implies that, even without

introducing redundant nodes, essentially all arcs already connect nodes between adjacent levels. Thus, in

our examt)les, tile only memory overhead in the forwarding arcs approach is due to postponed node deletion.

For the models we ran, our new approach is up to one order of magnitude faster, and with few exceptions

uses fewer MDD nodes than the one in [19]. The improvement mainly arises from the structural changes

made to the core routine Fire, which reflects the notion of event locality inherent in asynchronous systems.

Other improvements most importantly our cache optimizations contribute in average about 7 lagc,, and

up to 22% in total, to tile overall improvement in time efficiency. A comparison between the run-times for

the new algorithm and the ones for the algorithm in [19] indicates an increase factor in speed ranging fi'om

approximately constant for the Kanban and FMS nets, to what appears to be almost linear (in N) for the

slotted-ring model and the dining philosophers. Moreover, the forwarding-arcs approach is slightly faster

than the upstream-arcs approach, except for the Kanban system on which we comment below. Since both
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TABLE 6.1

Performance results

Approach in [19]

N [$[ final peak # [ time peak

nodes nodes it. [ (sec.) nodes it.

Philosophers 10 1.86 x 106 17 45 2 0.03 28 2

50 2.23 x 10 al 37 285 2 0.82 168 2

100 4.97 x 1{)_2 197 585 2 3.32 343 2

200 2.47 x 10125 397 1,185 2 13.76 693 2

300 1.23 x 10 Iss 597 1,785 2 30.88 1,043 2

400 6.10 x 10 _'_° 797 2,385 2 60.25 1,393 2

500 3.03 X 10313 997 2,985 2 92.17 1,743 2

600 1.51 x 10 a76 1,197 3,585 2 121.94 2,093 2

700 7.48 x 1043s 1,397 4,185 2 181.!2 2,443 2

800 3.72 x 10 S°I 1,597 4,785 2 245.76 2,793 2

900 1.85 x 10564 1,797 5,385 2 302.63 3,143 2

1,000 9.18 x 10626 1,997 5,985 2 382.04 3,493 2

Slotted ring 10 8.29 x 10_ - 60 691 7 1.47 409 7

20 2.73 x 1020 220 4,546 12 33.32 2,328 12

30 1.04 x 1031 480 15,101 17 242.36 10,433 17

40 4.16 x 1041 840 37,066 22 1,073.64 25,374 22

50 1.72 x 1052 1,300 76,308 27 4,228.88 47,806 27

FMS 5 2.90 x 106 149 433 10 0.57 239 10

10 2.50 x 109 354 1,038 15 2.42 599 15

15 2.17 x 1011 634 1,868 20 6.27 1,109 20

20 6.03 x 1012 989 2,923 25 13.52 1,769 25

25 8.54 x 10 la 1,419 4,203 30 26.49 2,579 30

50 4.24 x 101_ 4,694 13,978 55 209.96 8,879 55

75 6.98 x 1019 9,844 29,378 80 980.20 18,929 80

100 2.70 x 1021 16,869 50,403 105 2,681.80 32,729 105

Kanban 5 2.55 x 10 _ 7 47 11 0.08 55 4

10 1.01 x 109 12 87 21 1.26 155 4

15 4.70 x 10 l° 17 127 31 6.97 305 4

20 8.05 x 1011 22 167 41 24.64 505 4

25 7.68 x 1012 27 207 51 68.71 755 4

30 4.99 x 1013 32 247 61 161.49 1,055 4

40 9.94 x 1014 42 327 81 628.11 1,805 4

50 1.04 x 1016 52 407 101 1,681.96 2,755 4

Our new approach

# time (see.)

upstr, fwd.

0.02 0.02

0.15 0.13

0.37 0.36

1.22 1.20

2.80 2.77

4.52 4.40

7.14 6.89

9.33 8.93

12.65 12.30

16.88 16.06

21.17 20.29

26.10 24.94

0.82 0.77

12.74 12.22

76.45 75.00

297.07 293.15

908.40 897.97

0.26 0.22

1.05 0.88

2.83 2.20

6.47 4.83

13.01 9.12

166.28 73.13

484.93 299.34

1,448.16 845.91

0.05 0.05

0.66 0.76

3.90 4.43

I5.I1 16.76

44.62 49.12

113.99 123.67

511.44 564.13

1,586.32 1,492.21

variants of our new algorithm require significantly fewer peak MDD nodes, where the Kanban system is

again an exception, our memory penalty is ahnost compensated.

The two models whose parameter N affects the height of the MDD, namely the dining philosophers and

the slotted-ring model, provide a good testbed for our ideas since they give rise to tall MDDs with a high

degree of event locality. For these models, the CPU times are up to 15 times faster than the ones for [19],

and, more importantly, the gap widens as we continue to scale-up the nets. The main reason for this is that

the number of explored nodes per event fired is much more contained in our approach, compared to [19].
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When MDD heights are small, such as for the FMS and the Kanban _'stem, our algoritlun is still faster

than the one in [19], but the difference is not as impressive due to our increased book-keeping overhead.

TABLE 6.2

Timing results for the Kanban net wilh 16 levels (one place per level)

N 1 2 3 4 5 8 10 15 20

Approach in [19] (see.) 0.77 2.42 6.45 14.02 25.07 111.80 233.93 1,021.53 3,324.78

Upstream-arcs approach (see.) 0.20 0.46 0.69 1.16 1.80 5.32 9.54 29.50 73.49

Forwarding-arcs approach (sec.) 0.16 0.37 0.73 1.25 1.94 5.71 10.18 29.96 69.83

The results for the Kanban system are poor compared to the ones for our other examples, although

the number of iterations is reduced from 2 - N + 1 to 4 due to our advanced iteration control. There are

several reasons for this. First, splitting the Kanban net into only four subnets leads to an MDD with a

small depth, but a very large breadth. Clearly, an), attempt to exploit locality in this case cannot have

much pay-off. Second, our garbage-collection policy in the forwarding-arcs approach contributes to the

proliferation of deleted nodes, which are not truly destroyed until the end of the iteration. Combined with

the reduced number of iterations in our approach, the garbage collection bin grows too rapidly. Usually,

late node deletion is beneficial, since doing garbage collection in bulks reduces the number of times nodes

are scanned for removal. However, in case of the Kanban system, we see how this can backfire. It is worth

noting that using a finer and not. particularly "good" partition of the Kanban net, with one place per level,

drastically changes the results, as shown in Table 6.2. We only need to scale-up the model to N = 20 to

see an improvement of about factor 50 with respect to [19]. This observation indicates that our algorithm

might be well-suited in cases when a good partitioning cannot be found automatically or by hand, e.g., due

to insufficient heuristics.

Summarizing, our algorithm performs much better than [19] when Petri nets are partitioned into many

subnets, thereby leading to tall MDDs, as the exploitation of event locality becomes more beneficial. The

memory overhead in our approach, which is due to larger-sized MDD nodes in case of the upstream-arcs

approach and to redundant and deleted, but not-yet-destroyed nodes, in case of the forwarding-arcs approach,

is ahnost accounted for in practice by the small peak number of MDD nodes.

7. Related Work. A variety of approaches for the generation of reachable state spaces of synchronous

and asynchronous systems have been suggested in the literature, where state spaces are represented either

in an explicit or in a symbolic way.

Explicit state-space generation techniques build the reachable state space of the system under consid-

eration by successively iterating its next-state function [3, 6, 10, 13]. To achieve space efficiency, various

techniques have been introduced. Two techniques, namely multi-level data stT'uctures and merging common

bitvectors, deserve special mentioning. Multi-level data structures exploit the structure of the underlying

representation of the system under consideration, e.g., the approach reported in [6] and implemented in [5]

is based on a decomposition of a Petri net into subnets. As the name suggests, merging common bitvectors

aims at compressing the storage needed for each state a bitvector by merging common sub-bitvectors [3];

indeed, the result is somewhat analogous to the one obtained using BDDs. Tim latter technique is also suc-

cessfiflly used in automata-based model-checking tools [13]. While expIMt methods still require space linear

in the number of states, they usually possess advantages for numerical state-space analyses, e.g., those based

on Kronecker algebra [7], which may directly work on data structures employed for explMt state storage.
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To avoid tile problem of state-space explosion when building the explicit state space of concurrent,

asynchronous systems, researchers have developed three key techniques. (i) Compositional minimization

techniques build the state space of a concurrent system stepwise, i.e., parallel component by parallel com-

ponent, and minimize the state space of each intermediate system according to a behavioral congruence or

an interface specification [12]. (ii) Partial-order techniques exploit the fact. that. several traces of an asyn-

chronous system may be equivalent with respect to tile properties of interest [11]; thus, it is sufficient to

explore only a single trace of each equivalence class. (iii) Techniques exploiting symmetries in systems such

as those with repeated sub-systems can be used to avoid the explicit construction of symmetric subgraphs

of the overall state spaces [9]; colored Petri nets are also an example of this aspect [14].

Symbolic state-space generation techniques have traditionally focused on (synchronous) hardware sys-

tems rather than on (asynchronous) software systems [1, 4, 15, 17]. In the Petri net community, they were

first applied by Pastor et al. in [22]. This paper developed a BDD-based algorithm for the generation of the

reachability sets of safe Petri nets, by encoding each place of a net as a Boolean variable. The algorithm

is capable of generating state spaces of very large Petri nets within hours [24]. In recent work, Pastor and

Cortadella introduced a more efficient encoding of Petri nets by exploiting place invariants [21]. However,

the underlying logic is still based on Boolean variables. In contrast, our work uses a more general version of

decision diagrams, namely MDDs [15, 19], by which the amount of information carried in a single node of a

decision diagram can be increased. In particular, MDDs allow for a straightforward encoding of arbitrary,

i.e., not necessarily safe, Petri nets. Since we have already compared our approach to related MDD-based

techniques in the previous sections, we refrain from a repetition of this comparison here.

8. Conclusions and Future Work. This paper presented a very efficient new algorithm for building

the reachable state spaces of asynchronous systems. As in previous work [19], state spaces are symbolically

represented via Multi-valued Decision Diagrams (MDDs), which unlike Binary Decision Diagrams are able

to store complex information within a single node. However, in contrast to previous work, our algorithm fully

exploits event locality in asynchronons systems, integrates an intelligent cache management, and achieves

faster convergence via an advanced iteration control. Analytical results of examples well-known in the

Petri net community show that our algorithm is often about one order of magnitude faster than the one

introduced in [19] which in turn improves on previous algorithms with only a relatively small decrease in

space efficiency. In summary, our approach successfully reduces the run-time penalty of related algorithms

when generating very large state spaces using symbolic storage techniques. To the best of our knowledgc,

our algorithm is the first symbolic one taking advantage of event locality.

Regarding future work, we intend to parallelize our algorithm for shared-memory and distributed-

memory architectures. The idea is to map different levels of MDDs to different processors and, thereby,

to speed-up the state-space construction further while being able to store larger MDDs on distributed ar-

chitectures. Our algorithm is particularly suited for this kind of parallelization since all data structures are

already split according to levels. We believe that our approach promises to avoid the run-time penalties for

parallelization reported in the literature [18, 23, 25], especially regarding distributed-memory implementa-

tions on networks of workstations and PC clusters.
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Appendix A. Data Types and General Purpose Routines.

This section contains the definitions of the data types used in our pseudo code, as well as some general-

purpose routines for operating on these data types.

A.1. Data types. The data types employed by our algorithm are the following:

• The type level of levels is [1..K], where Ix" is a positive integer constant encoding the number of

MDD levels. The constant N of type array[1..K] of int represents the branching degree of MDDs

for each level.

•Ttle type event for events is integer, i.e., event names are encoded as integer values. Functions

First(e : event) : level and Last(e : event) : level return the index of the first and last level affected

by the corresponding event, respectively. Procedure PreprocessEvents 0 sorts the events according

to their first affected level, in increasing order. In the pseudo code, we also use the notation e' < e

to indicate that e' is smaller than e according to the order imposed by PreprocessEvents. Note that

all local events for level k are merged into a single macro event lk.

• The type mddNode(k : level) for MDD nodes is a record type having the following fields:

- dw : array [0..(N[k]- 1)] of mddAddr, which stores the N[k] downstream arcs for all K children

of the node under consideration.

- up : bag of mddAddr, which stores upstream arcs.

- cached : boolean, a flag indicating whether there exists a cache entry referring to this node.

- dirty : boolean, a flag signaling in combination with cached whether the cached copies are stale.

• The mddAddr type is a "virtual" address of an MDD node, which is a pair (lvl, ind) represented by

a 32-bit integer. The first [log 2 K] bits of an address encode the level Ivl of a node, the remaining

bits encode the position ind of the node within that level. In the pseudo code, S(p : mddAddr)

denotes the state space represented by the MDD rooted at p:

• The storage for "physical" MDD nodes is a vector T[1../x'] of heap-arrays, one heap-array per level.

Upon request, memory for 7- is allocated dynamically by pages. \_ use a 1024 node page size. In

the pseudo code, the memory allocation and release procedures are denoted by AllocateMemory(k :

level) : rnddAddr and ReleaseMemory(p: mddAddv), respectively. These nodes are also accessible

through a linked list which allows separate fast access to the deleted and the non-deleted nodes.

• The unique table (UT), UT[1..K], is an array of hash tables, one hash table per level, which store

pointers to unique MDD nodes. The hash key of an MDD node is computed solely over the values

of the dw-pointers.

• The union cache (UC), lt[1..k], and firing cache (FC), _[1../x'], are hash tables that store the results

of already computed operations. A UC table entry has type ({p : mddAddr, q : mddAddr},r :

mddAddr), while _t FC table entry has type (p : mddAddr, r : mddAddr). Also, for the union cache,

if k = max(p.lvl, q.lvl), then the triplet is hashed in UC[k].

For all hash tables mentioned above, the size of a table is dynamic, i.e., insertions and deletions may re-

dimension it. If the number of elements reaches the size of the table, we enlarge the table to about twice

its current size (more precisely, to the next prime number larger than twice the current size). If the number

of elements is less than _ th of the size of the table, we shrink the table to about half its current size (more

precisely, to the next prime number smaller than half the current size). The table size is not increased if it

is larger than a preset upper bound, and is not decreased if it is smaller than a preset lower bound.

19



i

A.2. Routines for Managing the Unique Table.

• h_serth_UT(in p : mddAddr, out r : mddAddr) : boolean

Searches UT[p.lvl] for a node with tile same pattern of downstream arcs as p--+dw. If it is found, r

is set to the address of this node, and tile fimction returns true. Otherwise, p is added to UT[p.lvl],

r is left unchanged, an(t the function returns false.

* RemoveFromUT(in p: mddAddr)

Removes p fi'om UT[p.h:l].

• ClearUT(in k: level)

Clears all entries in UT[k].

A.3. Routines for Managing the Union Cache.

• LookUpbtbrC(in k : level, in p : mddAddr, in q : mddAddr, out r : mddAddr)

Searches H[k] for an element of the form ({p,q}, .). If such a ({p, q},x) is found, it sets r to x and

returns true. Otherwise, it leaves r unchanged and returns false. The result is independent of the

order in which tile two parameters p and q are supplied.

• InsertlnUC(in k : level, in p : mddAddr, in q : mddAddr, in r : mddAddr)

Inserts ({p, q}, r) in U[k]. Given the logic of our algorithm,//[k] does not contain an); element of the

form ({p, q},-) and k = max{p.lvl, q.lvl}. The effect on L/[k] is independent of the order in whi(:h

the two parameters p and q are supplied.

• RemoveFromUC(in k : level, in p : mddAddr, in q : mddAddr

Removes the entry of the form ({p,q}, .) from L/[k].

• ClearUC(in k: level)

Clears all entries in/4[k].

A.4. Routines for Managing the Firing Cache.

• LookUphtFC(in k : level, in p : mddAddr, out r : mddAddr) boolean

Searches J-[k] for an element of the form (p,-). If such a (p,x) is found, it sets r to x and returns

true. Otherwise, it leaves r unchanged and returns false.

• lnserth_FC(in k : level, in p: mddAddr, in r : mddAddr)

Inserts (p, r) in )V[k]. Given the logic of our algorithm, )r[k] does not contain an)' element of the

form (p, .) and k >_p.lvl.

• ClearFC(in k : level)

Clears all entries in F[k].

A.5. Routines for Managing Sets and Bags. Sets of integers are implemented as queues. Elements

can be picked from the head (FIFO) and from the tail (LIFO) of a queue, according to the desired strategy.

• PickAnyElement(inout £ : set of int) : int

Selects and removes an arbitrary element from set £, arid returns it.

Bags of mddAddr are implemented as linked lists of pairs (mddAddr, count). They are managed via the

following two functions:
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AddEIement(in p : mddAddr, in plus : int, inout b : bag)

If bag b contains p, the count of p is increased by plus. Otherwise, p is added with count plus to tlw

list of elements in b.

• RemoveElement(in p : mddAddr, in minus : int, inout b : bag)

If bag b contains p with count greater than or equal to minus, the routine subtracts minus from the

count of p, followed by the deletion ofp in case the count becomes O. Otherwise, b is left unchanged.

Often the symbols "E", "=", "¢", and "_)" are also used in the context of bags, with their obvious meanings.

A.6. Routines for handling events.

• NewStates(in k : level, in e : event, in i : int) : set of int

Returns the set of local states obtained by firing event e, when e is enabled by local state i at level k.

Basically, this routine is the local next-state function for the subnet encoded in level k.

• IsIndependent(in k : level, in e : event) : boolean

An event e is indet)endent of some level k when the firing of e leaves level k unchanged. Note that

this property is different fi'om e being disabled.

A.7. Modifications for the Forwarding-arcs Approach. In the forwarding-arcs approach, the

record field up of node type mddNode is replaced by the following two fields:

• in of type int, which stores the number of incoming arcs from the next higher level, and

• deleted of type boolean, which signals whether the node has been marked for deletion. If so, it is

redundant, and its unique forwarding arc is stored in dw[0].

Moreover, since downstream arcs do not skip levels, entries of H[k] and ¢-[k] refer only to nodes at level k.

Thus, the level parameter k can be removed for routines LookUpInUC, InsertInUC, RemoveFromUC,

LookUpInFC, and InsertInFC.
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Appendix B. Detailed Pseudo Code for the "Upstream-arcs" Variant.

MDDgeneration(in m : array[1..K] of int) : mddAddr

Generates the state of model with to the initial state and returns the address of the MDD's root.space a respect

local

local

local

local

1.

2.

3.

4.

5.

6.

7.

8.

g.

10.

11.

12.

13.

14.

k : level;

e : event;

q : mddAddr;

mddChanged : boolean;

fork=l toKdo

ClearUT(k);

for k= 1 to K- 1do

ClearUC(k);

ClearFC(k );

q _ Setlnitial(m);

Preprocess Events 0;

repeat

mddChanged _ false;

for k= 1 to h'do

• flag signaling whether more iterations are needed

• the UT is cleared only once at the beginning

• the UC is initialized here and later purged of out-of-date entries

• the FC is cleared here and at the end of each Fire

• sort events in increasing order regarding First(.)

• true if any node of the MDD changes in this iteration

foreach event e satisfying First(e) = k do

Fire(e, q, mddChangcd);

until mddChanged = false;

return q;

Fire(in e : event, in s : mddAddr, inout mddChanged : boolean)

Generates and inserts the states reachable from the currently known state space represented by s via event e. For any

node at level First(e), it calls FireFromFirst, which propagates work downstream by calling Union and FireRecursive.

Then, for any node at a level k, with First(e) > k > Last(e), having incoming downstream arcs from a level above

First(e), Fire creates a temporary redundant node at level First(e), and calls FireFromFirst on it. The dummy node

is removed at the end, if, after exploration, it is still redundant. This second phase must be performed after the first

one, to avoid re-exploring (formerly redundant) nodes just introduced. The flag mddChanged is passed through and

updated.

local k : level;

local i : int;

local p, q, r, d : mddAddr;

local pHasDummy : boolean;

1. foreach p E T[First(c)] do

2. if FireFromFirst(e,p) then

3. mddChanged _ true;

4. for k = Last(c) to First(c) - 1 do

5. foreach p E T[k] do

6. pHasDummy _ false;

7. foreach q E p_up do

8. if q.lvl > First(e) then

9. if not pHasDummy then

10. d _ CreateNode(First(e),p);

11. Insertln UT( d, null);

12. pHasDummy _ true;

13. for i = 0 to N[q.lvl] do

14. if q_dw[i] = p then

15 SetArc(q, i, d);

(to be continued on next page)

• signals if an implicit root has to be inserted

• fire e starting at nodes in level First(e)

• check for downstream arcs skipping over First(e)

• downstream arc from q to p skips over First(e)

• insert a redundant node d at level First(e) pointing to p

• d is not in the UT, since it is a redundant node

• find all downstream arcs from q to p and re-direct them to d
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16. if pHasDummy then

17. if not FireFromFirst(e, d) then

18. Remove From U T (d) ;

19. CheckNode (d);

20. for k = First(e) - 1 downto 1 do

21. foreach ({p, q}, r) E L/[k] do

22. if (p--_up = I_) or (q-+up = 0) or (r.lvI > 0 and r'--+up = 0)

23. or (p--+dirty) or (q--+dirty) or (r.lvl > 0 and r---_dirty) then

24. RemoveFrom UC (k, p, q);

25. foreach p E T[k] do

26. DeleteDownstream (p);

2?. for k Last(e) to First(e) - 1 do

28. ClearFC(k);

(continued from previous page)

• if a redundant node has been created, explore it

• if it is unchanged, it is still redundant...
• ...remove d from the UT and...

• ...re-direct to p any arc that was re-directed to d, then delete d

• must clean up in this order for this to work

• disconnected nodes...

• ...and out-of-date entries...

• ...are removed from the UC

• clear disconnected nodes at level k

• clear firing caches at levels below First(e)

FireFromFirst(in e : event, in p : mddAddr) : boolean

Fires event e starting from node p in the UT, satisfying p.lvl = First(e). It propagates work downstream by calling

Union and FireRecursive. It returns true, if node p was changed, and false, otherwise. If p changes, its address is

removed from the UT. Moreover, either the node itself is deleted, if it has become redundant, or p is re-inserted in

the UT (this allows for updating its hash value). If the node is removed, the change is propagated upstream using

CheckNode. If the node is not changed, p is left in the UT.

local £ : set of int;

local pHasChanged : boolean;

local f,u : mddAddr;

local i,j : int;

1. £ _ LoeaIStatesToExplore(p, c);

2. pHasChanged _ false;

3. while _ ¢ _ do

4. i _ PickAnyEIement(£);

5. f _ FireRecursive(First(e) - 1, c,p-+dw[i]);

6. if f # (0, 0) do

7. foreach j C NewStates(First(e),e,i) do

8. u _ Union(f,F-+dw[j]);

9. if u _ F-+dw[j] then

10. if not pHasChanged then

11. RemoveF)'om U T (p);

12. pHasChanged _ true;

13. if NewStates (First(e), e, j) _ {bthen

14. AddElement (j, L:);

15. SetArc(p, j, u);

16. if pHasChanged then

17. if p_cached then p-+dirty _ true;

18. CheekNode(p);

19. return pHasChanged;

• flag signaling whether MDD with root p has changed

• get all the local states that potentially enable e

• choose any element i in Z_ and remove it from E

• this call returns p-+dw[i] if e is local

• f = (0,0) if and only ife could not fire

• j is a local state reachable from i when firing e

• the firing of e added new states

• this is the first change to p in this call

• p must be removed from the UT before changing it

• remember not to remove p from the UT again

• j needs to be explored (possibly again)

• cache entries referring to p are stale

• put back p into the UT, or delete it
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FireRecursive(in k : level, in e : event, in p : mddAddr) : mddAddr

Returns the address of a node representing the set of states reachable from S(p) when event e occurs, ignoring the]

dependency of e on levels above p.lvl. Function FireRe.cursive propagates work only downstream, since it only changes

a temporary node t in-place. The returned value is guaranteed to be in the UT, unless it is not (0, 1) or (0, 0).

local

local

local

local

: set of int;

7",t, f : mddAddr;

atSamcLevel : boolean;

i,j : int;

1. if k < Last(c) then

2. return p;

3. if p.lvl < k and IsIndependent(k, e) then

4. return FireReeursive(k - 1, e,p);

5. if LookUpInFC(k,p, r) then

6. return r;

7, t ¢= CreateNode(k, (0, 0));

8. if p.lvl < k then

9. atSameLevel _ false;

10. £ _ LocalStatesEnablingEvent (k, e);

11. else

12. atSameLevel ¢= true;

13. £ _ LocaIStatcsToExplore(p, e);

14. while £ _ ¢) do

15. i _ PiekAnyElemcnt(£);

16. if atSameLevel then

17. f _ FireReeursive(k - 1,e,p---÷dw[i]);

18. else

19. f _ FircRecursivc(k - 1, e,p);

20. if f ¢ (0,0 / then

21. foreach j E NewStates(k,c, i) do

22. u _ Union(f, t-+dw[j]);

23. if u 7_ t--+dw[j] then

24. if NewStates(k, c, j) _ 0 then

25. AddElement (j, £);

26. SetArc(t,j, u);

27'. t _ CheckNode(t);

28. InsertInFC(k,p,t);

29. return t;

• p.lvl = k ?

• the end of the recursion is reached

• e does not depend on level k

• continue at the next level

• create a temporary node t

• at this point, e depends on k

• initialize the set £ to all local states enabling e

• k = p. Ivl

• initialize the set £ to ali reachable local states enabling c

• choose any element i in L; and remove it from L:

• find states reachable from p_dw[i] via e

• nothing to explore here; move on to the next level

• f = (0,0) if and only if e could not fire

• the firing of e in p---rdw[i] added new states i

• e is still enabled

• j will have to be explored (possibly again)

• since t_up = O, this cannot cause recursive deletes upstream

Union(in p : mddAddr, in q : mddAddr) : mddAddr

Returns the address r of the node representing S(p) U S(q). It uses and updates the UC to speed-up computation, t

The returned value is guaranteed to be in the UT, unless it is not (0, 1) or (0,0). Of course, r.lvt < Max(p.lvt, q.tvl).[l

local k:level;

local i : int;

local r,u : mddAddr;

1. if p = (0, 1) or q = (0, 1) return (0, 1);

2. if p = (0,0) or p = q return q;

3. if q---- (0,0) return p;

(to be continued on next page)

• deal with special cases first
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4. k 4= Max(p.lvl, q.lvl);

5. if LookUplnUC(k,p,q,r) then

6. return r;

7. r 4= CreateNode(k, (0,0));

8. fori=0toN[k]-i do

9. if k > p.lvl then

10. u 4= Union(p,q---_dw[i]);

11. else if k > q.lvl then

12. u 4= Union(p_dw[i], q);

13. else

14. u 4= Union(_--_dw[i], q--*dw[i]);
15. SetArc(r, i, u);

16. r 4= CheekNode(r);

17. lnsertlnUC(k,p, q, r);

18. ifp 5_ 7' then InsertInUC(k,p,r,r);

19. ifq_ 7"then InsertlnUC(k,q,r,r);

20. p---_eaehed, q---_cached, r--+caehed 4= true;

21. return r;

(continued from previous page)

• if found, result of the union is returned in r

• otherwise, the union is computed in r

• p is at a lower level than q

• q is at a lower level than p

• p and q are at the same level

• since r-_up ----(_, this cannot cause recursive deletes upstream

• record the result of this union in the UC

• add predicted cache requests

CheckNode(in p: mddAddr) : mddAddr

Enforces the MDD properties for node p, which is not in the UT. It ensures that this node is neither redundant nor a

replica. If so, p is inserted in the UT. Otherwise, node p is disconnected from upstream nodes and deleted by calling

DeleteUpstreara, which in turn calls CheckNode on these nodes, and so on. The recursion stops when a modified

node does not have to be deleted. Function CheckNode returns the address of the node representing the set of states

initially described by p, and this address is guaranteed to be in the UT. As we allow a redundant root node, we treat

it as a special case.

local X:

i. if

2.

3.

4. if

mddAddr;

p.lvl =/C then • check special case

InsertInUT(p, null); • put the root node back into the UT

return p; • this allows for keeping the root node even if it is redundant

p--_dw[0] = p---_dw[1] ..... p---_dw[N[k] - 1] then • p is redundant; delete it and use its child

x 4= p-_dw[O];

DeleteUpstream(p, x); • all downstream arcs pointing to p must now point to x

return x;

• p is a replica of x; delete it and use x instead

• all downstream arcs pointing to p must now point to x

5.

6.

7.

8. else if InsertInUT(p,x) then

9. DeleteUpstream(p,x);

10. return x;

11. else

12. return p; • p is a distinct node and was inserted in the UT

DeleteUpstream(in o : mddAddr, in n : mddAddr)

Changes any downstream arc pointing to the old node o, not present in the UT, so that it points to the new node n

instead, thus disconnecting node o. Then it deletes o. After changing the downstream arcs of any node p in the

upstream bag of o, it removes p from the UT and enforces the reducedness property on it by calling CheckNodc, which

in turn may call DeletcUpstrearn.

local p : mddAddr;

local i : int;

(to be continued on next page)
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I. foreach p E o-+up do

2. RemoveFrom UT (p);

3. for i = 0 to N[p.lvl] - 1 do

4. if p--_dw[i] = o then

5. SctArr(p, i, n);

6. CheckNode (p);

7. for i = 0 to N[o.lvl] do

8. SetArc(o, i, {0, 0));

9. ReleaseMcmory(o);

(continued from previous page)

• check all nodes directly upstream

• updated node will be deleted or re-inserted in the UT by CheckNode

• this call does not need a downstream recursion

• enforce reducedness property

• disconnect node...

• ...and kill it

SetArc(in p : mddAddr, in i : int, in n : mddAddr)

Sets the i-th downstream of node to while maintaining consistency with the arcs. ]arc p upstream

local o : mddAddr;

1. o _ p-_dw[i];

2. l_--_dw[i] _ n;

3. if n.lvl ¢ 0 then

4. AddElement(p, 1, n--+up );

5. if o.lvl ¢ 0 then

6. RemoveElement (p, 1, o-+up);

• old node pointed by the downstream arc

• re-direct downstream arc

• no need to link (0,0} or (0, 1)

• increase count of upstream arcs for the new node pointed to

• no need to unllnk (0,0) or (0, ])

• reduce count of upstream arcs for old node

DcletcDownstream(in p: mddAddr)

If node p has no incoming arcs, this routine removes p from the UT and deletes it, after having recursively examinedeach of its downstream arcs.

local q : mddAddr;

local i : int;

1. if p--+up = 0 then

2. RemoveF_om UT(p);

3. for i = 0 to N_.tvl] do

4. q _ p--+dw[i];

5. SetArc(p, i, (0, 0));

6. DeleteDownstream (q);

7. ReleaseMemory (p);

• disconnect old downstream arc pointing to q

• check if q still has incoming arcs

• kill node p

Sethdtial(in m : array [1..K] of int) : mddAddr

I Constructs the MDD representing the initial state m of the model, and returns a pointer to the MDD's root. l

local p,q : mddAddr;

local k : int;

1. q _ (O, 1);

2. for k= 1 toKdo

3. p _ CreateNode(k, (0, 0));

4. SctArc(p, m[k], q);

5. lnsertlnUT(p, null);

6. q_p;

7. return q;

• initialize q to node (0, 1)

• link new node, at level k, to the one below, at level k - 1

• use null because p is known to be a new node
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CreatcNodc(in k : level, in initial : mddAddr') : mddAddr

Allocates a level-k node with all the entries in dw initialized to initial, up initialized to O, flags cached and dirty

initialized to false, and returns its address. It also updates the bag of upstream arcs for node initial.

local p : mddAddr;

local i : int;

1. p _ AllocateMemory(k);

2. F-_up _ q);

3. fori=Oto N[k]-I do

4. p--_dw[i] _ initial;

5. if initial.lvl > 0 then

6. AddElemeat(p, N[k], initial-+up);

7. p--_cached, p-+dirty _ ,false;

8. return p;

LocaIStatesEnablingEvent(in k : level, in e : event) : set of int

I Returns the set of local states at level k which enable e. I

local L_ : set of int;

local i : int;

I. £¢=_;

2. fori=OtoN[k]-I do

3. if NewStates(k, e, i) _ 0 then

4. AddElement (i, E) ;

5. return L:;

• refer to the local next-state function of the underlying model

LocaIStatesToExpIore(in p : mddAddr, in c : event) : set of int

Returns the set of local states at level p.lvl which (I) are currently reachable via the considered path from the root to p

and (2) enable c. If c is independent of level p.lvl, only Condition (1) is restrictive, since NewStates(p.lvl, c, i) = {i},

i.e., all local states at this level enable c.

local

local

: set of int;

i : int;

1. £ ¢: q);

2. for i = 0 to N[p.lvl] - 1 do

3. if p_dw[i] # (0, O) and NewStates(p.lvl, e, i) # O) then

4. AddElement(i, £);

5. return tT;
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Appendix C. Detailed PseudoCode for the "Forwarding-arcs" Variant.

Routines Sethdtial, LocaIStatesEnabIingEvent, and LocalStatesToEzplore are as for the upstream-arcs approach.

TILe other routines are given here, including some new ones.

MDDgeneration(in m : array[1..K] of int) : mddAddr

I Generates the state of a model with to initial state and returns the address of the MDD's root.space respect /71,

local

local

local

k : level;

q : mddAddr;

mddChanged : boolean;

1. for k= 1 toKdo

2. ClearUT(k);

3. for k= 1 to K-ldo

4. ClearUC(k);

5. for k = l to K- l do

6. ClearFC(k);

7. q 4= SctInitial(m);

8. PreproeessEvents 0;

9. repeat

10. mddChanged _ false;

I1. Fire(ll);

12. for k=2toKdo

13. DeleteForwardmg (k);

14. foreach event e satisfying First(e) = k do

15. Fire(e, q, mddChanged);

15. until mddChanged = false;

• flag signaling whether more iterations are needed

• the UT is cleared only once at the beginning

• the UC is initialized here and later purged of out-of-date entries

• the FC is cleared here and at the end of each Five

• sort events in increasing order regarding First(.)

• true if any node changes in this iteration

• fire the local macro event at level 1

• eliminate non-unique nodes at level k

DeleteForwarding(in k : level)

Removes all nodes marked for deletion at level k- 1 and destroys the corresponding forwarding chain, after appropriately

re-directing the downstream arcs from nodes at level k. This requires to remove these nodes from the UT and to check

them back in. Thus, this procedure might cause nodes at level k to become marked for deletion.

local p, u : mddAddr;

local pHasOhanged : boolean;

local i : int;

1. foreach p E T[k] do

2. pHasChanged _ false;

3. for i = 0 to N[k] - 1 do

4. ifp-+dw[i].Ivl > O then

5. u 4= UpdateArc(p, i);

6. if u _ p--+dw[i] then

7. if pHasChanged = false then

8. Remove From U T (p ) :

9. pHasChanged _ true;

10. SetArc(p, i, u);

11. if pHasChanged then

12. CheckNode (p);

• flag signaling whether p has changed

• eliminate forwarding arcs and nodes marked for deletion at level k - 1

• update arc p--+dw[i], in case it points to a node marked for deletion

• F--_dw[i] does point to a node marked for deletion

• p must be removed from the UT before changing it

• remember not to remove p from the UT again

• point p-->dw[i] to the equivalent node not marked for deletion

* this might mark p for deletion
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UpdateAre(in p : mddAddr, in i : int) : mddAddr

If q = p--+dw[i] is not marked for deletion, q is returned. Otherwise, u is returned - where it is the "ultimate" node in

the forwarding chain - after (1) either re-directing q's forwarding arcs to u, so that further accesses to q will determine u

more efficiently, or (2) deleting q, if one just followed the last arc reaching it (either downstream or forwarding).

local q, u : mddAddr;

1. q 4= p--4dw[i];

2. if (q.lvl > O) and q---->deleted then

3. u _ UpdateArc(q, 0);

4. if q--+in = 1 then

5. SetAre(p, O, (0, 0));

6. ReIeaseMemory ( q) ;

7. SctArc(q, O, u);

8. if q--->in = 0 then

9. return u;

10. else

11. return q;

• the only arc pointing to q is followed...

• ...so q can finally be deleted

• q cannot be deleted, but its forwarding arc can be set to the end of the chain

• u is not marked for deletion

Fire(in e : event, in q : mddAddr, inout mddChanged : boolean)

Generates and inserts the states reachable from the current state space via event e. For any node at level First(c), it

calls FireFromFirst. The flag mddChanged is passed through and updated.

local k : level;

local p, q, r : raddAddr;

1. foreach p C T[First(e)] do

2. if FireFromFirst(e,p) then

3. mddChanged 4= true;

4. for k = First(e) - 1 downto 1 do

5. foreach ({p, q}, r) 6 U[k] do

6. if (p_up = O) or (q---_uv = O) or (t-+up = @)

7. or (p-->dirty) or (q-+dirty) or (t-+dirty) then

8. RemoveFrom U C (k, p, q);

9. foreach p C T[k] do

10. DeleteDownstream (p );

11. for k = Last(e) to First(e) - 1 do

12. Y[k] _ O;

• fire e starting at nodes in the first level affecting it

• must clean up in this order for this to work

• disconnected nodes...

• ...and out-of-date entries...

• ...are removed from the UC

• clear disconnected nodes at level k

• clear firing caches at levels below First(e)

FireFromFirst(in e : event, in p : raddAddr) : boolean

Fires event e starting from node p in the UT, satisfying p.lvl = First(c). It propagates work downstream by calling

Union and FireReeursive. It returns true if node p was changed, and false, otherwise. If the node changes, p is

removed from the UT. Moreover, whether node p is deleted, if it has become redundant, or p is re-inserted in the UT

(this allows for the hash value to be updated). If the node is removed, the change is recorded by CheekNode using a

forwarding arc. If the node is not changed, p is left in the UT.

local £ : set of int;

local pHasChanged : boolean;

local f, u : mddAddr;

local i,j : int;

(to be continued on next page)

• flag signaling whether p has changed
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1. £ _ LocatStatesToExplore (p, e);

2. pHasChanged _= false;

3. while E _ _ do

4. i _ PickAnyElement(£);

5. f _ FireRecursive(e,p--+dw[i]);

6. if f _ (0,0> then

7. foreach j E NewStates(First(e),e,i) do

8. u _ Union(f,p--_dw[j]);

9. if u ¢ p--+dw[j] then

10. if not pHasChanged then

11. Removc From U T (p);

12. pHasChanged _ true;

13. if NewStatcs (First(c), e, j) _ _ then

14. AddEIemcnt(j, L:);

15. SetArc(p, j, u);

16. if pHasChanged then

17. if p---+caehed then p----_dirty _ true;

18. CheckNode (p) ;

19. return pHasChanged;

(continued from previous page )

• get all the local states that potentially enable e

• choose any element i in L: and remove it from L:

• this call returns p--_dw[i] if e is local

• f = (0,01 if and only if e could not fire

• j is a local state reachable from i when firing e

• the firing of e added new states

• this is the first change to p in this call

• we must remove p from the UT before changing it

• remember not to remove p from the UT again

• if e is still enabled...

• ...j will have to be explored (possibly again)

• cache entries referring to p are invalidated

• put p back into the UT, or delete it

FireReeursive(in e : event, in p : mddAddr) : mddAddr

Returns the address of a node representing the set of states reachable from S(p) when event e occurs, ignoring the

dependency of e on levels above p.lvl. FireRecursive propagates work only downstream, since it only changes a

temporary node t in-place. Because redundant nodes are preserved, the returned value is guaranteed to be in the UT

and at the same level as p, unless it is 10, 0).

local

local

local

1

2.

3.

4,

5°

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

: set of int;

r, t, f : mddADdr;

i,j : int;

if p.tvI < Last(c) then

return p;

if LookUpInFO(p.lvt,p, r) then

return r;

r e= CreateNode (p.h,l, (0, 0));

£ *= LocalStatcsToExplore(p, e);

while£#_ do

i *= PickAnyElement(£);

f _ Fi,eReeursive(_',p---_dw[i]);

if f ?_ (0,0> then

• end of the recursion

• create a temporary node t

• initialize the set /_ to all reachable local states enabling e

foreach j E NewStates(p.Ivl, e, i) do

u _ Union(f, r_dw[j]);

if u ¢ r-+dw[j] then

if NewStates(p.lvI, c,j) _ O then

AddElement(j, £);

SetArc(r,j, u);

r _ CheckNode(r);

InscrtInFC (p. Ivl, p_ r);

return t;

• choose any element i in LZand remove it from £

• find states reachable from p-_dw[i] via e

• f = (0,0) if and only if e could not fire

• the firing of e in p-_dw[i] added new states

• j will have to be explored (possibly again)

• since t--rup = _, this cannot cause recursive deletes upstream
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Union(in p : mddAddr, in q : mddAddr) : mddAddr

Returns the address r of the node representing S(p)US(q), where p.Ivl = q.lvl. It uses and updates the UC to speed-up
computation. Since redundant nodes are kept, the returned value is guaranteed to be in the UT and at the same level

of p and q, unless it is not (0, 0).

local

local

r, u : raddAddr;

i : int;

1. if p = (0, 1) or q = (0, 1) return (0, 1_;

2. if p= C0,0) and q= (0,0) return C0,0);

3. if p = q return q:

4. if LookUplnUO(p.lvl, p, q, r) then

5. return r;

5. r _ CreateNode (p.lvl, CO,0));

7. for i = 0 to N_v.lvl] - 1 do

8. u _ Union(p-_dw[i], q_dw[i]);

9. SetArc(r, i, u);

10. r 4= CheckNode(r);

11. InsertInUC(p.lvl, p, q, r);

12. ifp _ r then InsertlnUC(k,p,r,r);

13. if q ¢ r then lnsertInUC(k, q, r, r);

14. p--+cached, q-+cached, t-+cached 4= true;

15. return r;

• deal with special cases first

• if found, result of the union is returned in r

• otherwise, the union is computed in r

• since r--_up ----0, this cannot cause recursive deletes upstream

• record the result of this union in the UC

• add predicted cache requests

CheckNode(in p : mddAddr) : mddAddr

Ensures that p, which is not in the UT, is not a replica or a redundant node pointing to C0, 0), and inserts p in the

UT. Otherwise, node p is deleted (if it has no incoming arcs) or it is marked for deletion and a forwarding arc is placed

in it. If it has incoming arcs, this can happen only when CheckNode is called from FirePromFirst, i.e., never when p

is a dummy pointing to C0, 0). In any case, ChcckNode returns the address of the node representing the set of states

initially described by p. This address is guaranteed to be in the UT, unless it is not (0, 0).

local

local

q : mddAddr;

i : int;

1. if p--_dw[0] = p--+dw[X] ..... p-+dw[N[p.lvl] - 1] = (0, 0) then

2. ReleaseMeraory(p);

3. return C0, 0);

4. else if lnsertlnUT(p,q) then

5. for i -- 0 to N[p.lvl] do

6. SetArc(p, i, C0, 0));

7. if p--tin = 0 then

8. Release Memory (p);

9. else

10. l_--4deIeted _ true;

11. SetArc(p, 0, q);

12. return q;

13. else

14. return p;

• this can happen only when p-+in = 0

• p is a dummy with downstream arcs pointing to C0, 0), delete it

• p is redundant, remove it, and use u instead

• disconnect old downstream arcs

• p can now be deleted

• deletion of p must be delayed

• mark p for future deletion

• record the forwarding arc

• p is a distinct node and was inserted in the UT
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SetAre(in p : mddAddr, in i : int, in n : mddAddr)

Sets the i-th downstream arc of node p to n, while at the same time maintaining consistency with the incoming-arcs

count, f the incoming-arcs count of the old node p-_dw[i] becomes O, this node will be removed later.

local o : mddAddr;

1. o _ p-_dw[i];

2. p---_dw[i] _ n;

3. if n.Ivl ¢ 0 then

4. n-+in _ n--_in + 1;

5. if o.lvl _ 0 then

6. o-+in _ o-_in - 1;

• old node pointed by downstream arc
• re-direct downstream arc

• no need to keep track of (0,0) or (0, 1)

• increase count of upstream arcs for new node

• no need to keep track of (0,0) or {0, 1)

• reduce count of upstream arcs for old node

DeleteDownstream (in p : raddAddr')

If node p has no incoming arcs, this routine removes p from the UT and deletes it, after having recursively examined

each of its downstream arcs.

local q : mddAddr;

local i : int;

1. if p-+in = 0 then

2. RemoveFrornUT(p);

3. for i -- 0 to N[p.lvl] do

4. q _ p--rdw[i];

5. if q.hpl > 0 then

6. SetAre(p, i, (0, 0));

7. Delet e Downstrearn (q);

8. ReIeaseMeraory (p);

• disconnect old downstream arc pointing to q

• check if q still has incoming arcs

CreateNode(in k : level, in initial : mddAddr) : mddAddr

Allocates a level-k node with all the entries in dw initialized to initial, in initialized to zero, flags cached and dirtyinitialized to false, and returns its address. It also updates the incoming-arcs count for node initial.

local p : mddAddr;

local i : int;

1. p _ AIIocateMemory(k);

2. p--_in _ O;

3. fori=OtoN[k]-ldo

4. p--+dw[i] 4== initial;

5. if initial.lvl > 0 then

6. initial-+in _ initial--+in + N[k];

7. p--_caehed, p--+dirty _ false;

8. return p;
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Appendix D. An Illustration of the Algorithm.

In this section, we illustrate the upstream-arcs variant of our algorithul by means of a small example, namely

the Kanban net depicted in Fig. 6.1, upper right, with N = 1 for tile initial marking.

D.1. Partitioning and Initialization. In order to apply our MDD-ba._ed approach, the Kanban net is

partitioned into four subnets, subnet 1 to subnet 4. Subnet i contains the places p,, P,,,i, pb_ck,, and pout,. The

local macro event L-, consists of transitions toki, tredo_, and thick, -- plus transition tout_ or ti.4 where applicable

(cf. Fig. 6.1). Further, the system possesses two synchronizing events, tsynchl_23 and tsynch4_23, which we abbreviate

by sa and s2, respectively.

FI(;. D.1. Indexing of local states for the Kanban subnets

Given this partitioning, each subnet has four local states which we number 0 through 3 as show in Figure D.1.

In the sequel, we also abuse notation and write (I4,Is, I.,,I_), where Ij C {0,1,2,3} and 1 _< j < 4, for the set

{(i4,i3,i2,i_) [i4 E I4, i3 E 13, i2 E I2, i_ E I_}. If/j = {0, 1,2,3}, we write Ij ----* for short.

macro event /1

* * * * * *

* * * * * *

* * * * * *

1 {2,3} 2 1 3 0

TABLE D.1

Transitions of the example net.

macro event l.,

$ * * *

1 {2,3} 2 1

macro event 13 macro event 14

* * * * 0 1 1 {2,3} 2 1

1 {2,3} 2 1 * * * * * *

* * * $ * * * * * *

* * * * * * * * * *

syn. 81 syn. s2

3 0 0 1

3 0 0 1

0 1 * *

The initial state (initial marking) of our net is (0,0,0,0). Thus, the initially reachable states space S is

{(0, 0, 0, 0)}, which is represented by the MDD depicted in Fig. D.2, left-hand side. The net's transitions are schemat-

ically shown in the six tables of Table D.1, one table per event. Each column of a table contains an enabling pattern

of the considered event (on the left), i.e., a set of global states, and the global state resulting after the event fires (on

the right).

In the following, we show how the upstream-arcs variant of our algorithm constructs the reachable state space

of the Kanban net. Before the iterative work of the algorithm starts, the routine PreprocessEvents sorts the events

in the order l_ < l.) < 13 < s_ < 14 < s2, since First(l_) = 1, First(12) = 2, First(13) = First(sl) = 3, and

First(14) = First(82) = 4.
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D.2. First Iteration. In the first iteration, starting from the MDD representing the initial state, our algo-

rithln invokes the following routines:

1. Fire(f1), which attempts a FireFromFirst(ll, (1,0)): unsuccessful, no local states enable ll.

2. Fire(12), which attempts a FireFromFirst(12, (2, 0)): unsuccessful, no local states enable 12.

3. Fire(la), which attempts a FireFromFirst(ls, (3, 0)): unsuccessNl, no local states enable Is.

4. Firc(sl), which attempts a FireFromFirst(sl, (3, 0)): unsuccessful, no local states enable s_.

The first enabled event is local macro event 14, as confirmed by routine Fireb%omFirst (I:t, (4, 0)) which finds local state

0 enabling 14. Since NewStates (4,14, 0) is {1}, the downstream pointers of node (4, 0) are updated to include the state

(1, 0, 0, 0) reached by firing 14, i.e., (4, 0).dw[1] _ Union((4, 0).dw[0], (4, 0).dw[1]) = Union((3, 0), (0, 0)) = (3, 0).

' T ? t _

<3,o>1 I I I I <3,o>

<2,o>! I 1 1 I <2,o>__.LJ

FIG. D.2. Iteration 1, event 14

However, the firing of l._ is not exhausted, yet, since local state 1 on level 4 still enables 14. After repeating the

above exploration scheme three times, all downstream arcs of node (4, 0) point to node (3, 0). Thus, the reachable

state space S discovered so far is updated to S U {({1, 2, 3}, 0, 0, 0)} = {(*, 0, 0, 0)} (of. Fig. D.2, right-hand side).

I1.|_|1 ', _ ' ' _ , <4 ]>

<4,0> _ ............. <4,0>

<3,0> _ _ <3 I> <3,0> Ilill 'LaL__L..J <B,2>

<2.0>1;I:_1I I I t'L..[.J_.U <2,l> <2,0>I_q-TTiq
<2,1>

'm
FIG. D.3. Iteration l, event s2

Next, the synchronizing event s2 becomes enable(t due to the sequence (4,0)-2-_(3, o o0)--+(2,0>--+(1, 0) (cf.

Fig. D.3). The routine FircFromFirsl, called with respect to node (4,0) builds the MDD rooted at (3, 1) in a

series of FireRecursive calls:

1. FireRecursive (2, .s2, (2, 0)) = (2, 1) and (2, 1).dw[1] = (1,0)

2. FircRecursivc(3, s:, (3, 0)) = {a, 1) and (3, 1).dw[1] = (2, 1)

In Fig. D.3, left-hand side, also a node (4, 1) is depicted, which is not actually created. The purpose of showing

it is to complete the representation of {(0, 1, 1, 0)}, which is the new state obtained 1)5' firing ._. By calling Union
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regardingnodes(3,0}and(3,1)= (3,2),ttlenewstateisaddedto S. Hence, S is updated to S U {(0, 1, 1, 0)} =

{(*, 0, 0, 0), (0, 1, 1,0)}. Moreover, node (3, 2) is linked as tlle 0-th successor of (4, 0}, ill order to bind the new MDD

to tile pattern enabling tlle firing. Since the temporary MDD rooted at (3, 1), which is used for computing the union,

is disconnected, it is removed by the next DeleteDownstream call, which concludes the first iteration.

<4,0> _ <4.0> L_.._

<3,0>1 I I I I _ <3,2> <3,0>1 I I I I I_1_1 I 1<3,->

..................................................................................<210>I I I I _ :l : :I ' 'lj I -1-1 <2,,> <2,o>L I I IIi............._111 ,I............:1 :l <-,'>;..........

............................. _'7 ............................................................................................................. _....[ .................. .<,,o> <,,o>

FIG. D.4. Iteration 2, event 12

D.3. Second Iteration. In the second iteration, local macro event l., is detected to be enabled by local

state 1 in node (2, 1). However, tile exploration from node (2, 0) is still unsuccessfid, since this node is unchanged.

Event l., fires twice (cf. Fig. D.4, right-hand side) and adds local states 2 and 3 to node (2, 1}. Hence, the updated

reachable state space S is {(*, 0, 0, 0), (0, 1, {1, 2, 3}, 0)}.

<4,0> _ <4,0>

<.,0>1 I I I I _<3,2> <3,0>1,1 I I I 1,1,111i1<3,2>_

<20>LI I I I I I I I Ice,l> <20>1_1 I I I I 1,1,1,1 <2,1>

<l,0>/I I I I-

FIG. D.5. Iteration 2, event 13

Similarly, local macro event, la is enabled by only one node at level 3, namely node {3, 2). After firing it twice

from node (3, 2), the state space S becomes {(*, 0, 0, 0), (0, {1, 2, 3}, {1, 2, 3}, 0)} (cf. Fig. D.5).

<40> _ <4,0> _

i<3,0> [. I I I I _ <32> r--_--]i-- j-:_ <3,0> I I I I ] 1,.111,11]<3,2 > !

i<2,0>L'l I I'1 I 111',/'1<2,,> ,_ <2,0>Ll I I I LA+_, <2,,>U_I_L_I
_ t _ ' i v--- ' J I " <x2>

:: } r_, ! : } <,,l> . .... =- I .v...'.
i<]o>!41 I I I .......................... I I, I I I <,,o>L_ ;-=_ I:l:l I I I

...................................................... i _L3_1-7-U=757:--757575:£-5757:--:-S7-r:-----7:r:--:_:- " ................

FIG, D.6. Iteration 2, event Sl
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Thenewstatesaddedsofarcontributeto theenablingofsynchronizingeventsl. Its exploration, initiated at

level 3, finds the sequence (3, 2)-2e(2, 1}-2-+(1, 0}--0-+(0, 1). This path represents the set of states {(., 3, 3, 0)}. In

the current state space, this pattern is part of only one global state, state {(0, 3, 3, 0)}. By firing sl, the new state

{(0, 0, 0, 1)} is reached. Next, Union is invoked regarding the MDDs rooted at nodes (2, 1} and (2, 2}. The resulting

MDD, rooted at node (2,3), is linked as the 0-th successor of node (3,2) (cf. Fig. D.6). Thus, tile new state is

integrated in the state space. Hence, S = {(*, 0, 0, 0), (0, {1, 2, 3}, {1, 2, 3}, 0), (0, 0, 0, 1)}.

i <4.0> _ <4,0> _ i
: ................ t................................................................................................................................... _"HI_-'I...........................................

<3,0>I I I I I I LIJi_I_I<3,-> <3,0>::.:__[_:__: I_l_! _1,1<3,2>
t.__ -, I

<2,0>LIIII [ ! I J It 1<2,1> _ <20> :_:z__k_'__: I I ll_ I, 1<2,1>

, 'J I <,,e> 'J l
<1,o>1 I I i I

FIG. D.7. Iteration 2, event 14

Exploration of local macro event I4 from the only node at level 4, node (4, 0), reveals some new states that need

to be incorporated in our MDD. To do so, all the local states of node (4, 0) have to be searched. Since there exists a

transition fi'om local state 0 to local state 1, a._ part of the macro event, node FireRecursive(3, 14, (4, 0}.dzo[0]) = {3, 2)

has to be added to (4, 0).dw[1], since NewStates(4, l.,, 0) = {1}. Accordingly, the call Union((3, 0), (3, 2)) creates the

new node (3,3) and sets its downstream pointers to Union( (a, o).ctw[i], (3,2).dw[i]), for 0 < i < 3. The results are

(2,3} = Union((2,0}, (2, 3)), (2, 1}, (2, 1}, and (2, 1}, respectively. Node (3,) is then looked up in the unique tabh,

and identified as node (3, 2), which is already haMmd. Hence, Union((3, 0), (3, 2}) returns the address to node (3, 2)

and stores this result in the union cache. As a consequence, (4, 0).dw[1] is set to point to node (3, 2).

Next, local state 0 is explored, and 14 is found to remain enabled. The following calls subsequently se.t all the

dmvnstream arcs of (4,0) to (3,2). The steps are the same as illustrated before; the only exception is that tile

result of Union((a, o), (a, 2)) is looked up and found in the union cache, without being computed. When all four

downstream arcs of (4, 0} are updated, its old chiht (3, 0) becomes disconnected and has to be removed. The routine

DeIeteDownstream will do this by scanning the branch all the way down to (1, 0) (cf. Fig. D.7). At the end of Fire(I4),

the discovered reachable state space is S = {(*, 0, 0, {0, 1}), (*, {1, 2, 3}, {1, 2, 3}, 0)}.

<4,0> _ <4,I> :, L : : ' <4,0>

i "....................... _ i c7: :'-:: ::=: :::z==c:z=z=kzzk=:-'_ ___ :

:,!<2 > _ <'... _3> <2,4> _ <2.....1> I I t I _I, I <2_>1 _I I I I <_,S>_, . .

.......... _ _'i ...................i ............i-;=_;::=:==_' ......................................i_;<_=l-@ii<-:_'--_-<-l:i_<+--:a-_i.t.:-!:!'-_-:_-:-!-!--a!:!-_:::::;....

k_ ' I _l I <'.-'>l,ljl I I

<1,0> <1,2>_ <1,0> 1 \

FI(;. D.8. Iteration 2, event s2

In the next step, event s._ is detected to be enabled; it can fire from (4, 0}---_{3, 2)--2-+(2,3)---_{1, 2}. Hence,

FireRecursive(3, s2, (3, 2}) builds the nodes representing the outcome of firing s2, i.e., "... -2-+ (3, 3)----+(2, 4)-----+(1,] t 2}."
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Then,Union({3, 2), {3, 3)) adds the result to the state space. The process of creating the sub-MDD roote( at (3, 4)

involves several recursive calls:

1. (3, 4).dw[0] = Union((2, 3), {0, 0)) = {2, 3), a hashed ,,ode

2. (3, 4).dw[1] = Union({2, 1), (2, 4)) = (2, 5), a new node

3. (3, 4).dw[2] = Union((2, 1), (0, 0)) = (2, 1), a hashed node

4. (3,4).dw[3] = Union((2, 1), (0, 0)) = (2, 1), a hashed node

To complete the execution of Fire.FromFirst(s2, (4, 0)), node (3, 4) is linked to the MDD as 0-th child of node (4, 0),

the node where the enabling pattern originated. The state space S now incorporates the new states {0, 1, 1, {0, 1}},

i.e., S = {(*, 0, 0, {0, 1}), (*, {1, 2, 3}, {1, 2, 3}, 0), (0, 1, 1, {0, 1})}. This completes the second iteration.

<4,0> <4,0>

FIc. D.9. Iteration 3, event 11

D.4. Third Iteration. As opposed to the first two iterations, event 11 is enabled in the third iteration. The

new node (1,2) created in the previous phase has a non-zero pointer in local state 1. Event Ii can fire twice and sets

the last two downstream pointers of node (1, 2) to point to node {0, 1). When the firing is exhausted, node (1, 2) is

tested for redundancy. The routine CheckNode finds that all tile children of the node are equal and that the node

is not the root, i.e., it is a redundant. To eventually preserve the reducedness property of MDDs, CheckNode will in

turn call DeleteUpstream((1, 2), {0, 1)), which replaces all the occurrences of the redundant node with its only child.

More precisely, first the bag of upstream arcs of node {1, 2) is traversed, and then all the links from the parents are

re-directed to (0, 1). Then, the disconnected node {1, 2) is deleted. The resulting MDD represents the state space

S= {(*,0,0,,),(0,{1,2,3},{1,2,3},.),(,,{1,2,3},{1,2,3},0)} (cf. Fig. D.9).

<4,0> _ <4,0> I I I

i <-.4> I, II 44.. _[t I1 I I I <3,2> <3,4> I_ I, I I, I I tl

I,I II, ..11 l.dq-.l 1,1,1,1<2,_> I,I I III IJ...LJ I I
_---M:------.-...---,.---.----¥...-.-->_ .... b---i................

--%

1,1,1

....1H.4..................
Ii111 <3,2>

t

/I I I I<l,0> _\',A I,,I I I I<1,o>

FIG. D.10. Iteration 3, events 12 and la

Next to be examined are the local macro events 12 and 13. Both are enabled hy a single node at the corresponding

level. As a result, the first links of nodes (2, 5) and {3, 4) are copied in the last two locations of the array of dmvnstream
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pointers.TheresultingMDDrepresentsstatespaceS = {(*, 0, 0, *), (0, {1, 2, 3}, {1, 2, 3}, *), (*, {1, 2, 3}, {1,2, 3}, 0)}
3 3*

(cf. Fig. D.10). Event sl is then enabled by the sequences {3, 2)_-r(2, 1)_+{1, 0)_+(0, 1) and {3, 4}--+{2, 5)-:---+(0, 1}.

However, no new states need to be adde(1, since the outcomes (3, 0,0, 1) and (0,0, 0, 1), respectively, are ah'eady

encoded in $. Thus, the MDD remains unchanged.

i I ! J lAl_l<4.0> _<4,0> i

......................<3,4> t ....._; ................................................................................................<3,2> <3,4> _ .........................................

[ I 1,1,1,1 <2,1> I(1'1 I Ik.[_ --'-v-r_'-v-'

<1,0> _-

F1(_. D.11. Iteration 3, event 14

Finally, local event 14 Call fire again from node (4, 0). The last three of its downstream pointers are replaced by

the union of nodes {3, 2) and (3, 4), which is node {3, 4}, since the suh-MDD rooted at node (3, 4} encodes a superset

of the set encoded by the sub-MDD rooted at node (3, 2). With all of its upstream arcs removed from its bag, node

{3, 2) becomes disconnected and is deleted along with its descendants by a call of routine DeleteDownstream. The

purged MDD now stores the state space ,9 = {(*, 0, 0, *), (*, {1, 2, 3}, {1, 2, 3}, *)}, and the third iteration is finished

(cf. Fig. D.11).

D.5. Final State Space. In the fourth iteration, no new reachable states are detected. Hence, the algorithm

terminates and returns the root to tile MDD representing the final state space. The final MDD is depicted in

Fig. D.12. Note that level 1 is empty; the dotted node is redlHldant.

Ill
I

ur7 

i- .... t

t___ _ j

FIG, D.12. Final MDD representing the complete reachable state space
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